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Effect of rotation on the stability 
of a doubly diffusive fluid layer 

By ARNE J. PEARLSTEIN 
Mechanics and Structures Department, 

University of California, Los Angeles, California 90024 

(Received 13 October 1976 and in revised form 8 November 1979) 

The stability of a rotating doubly diffusive fluid is considered. It is shown that ( 1 )  
a non-rotating layer can be destabilized by rotation, (2) a rotating layer can be de- 
stabilized by the addition of a bottom-heavy solute gradient, and (3) under some 
conditions, three thermal Rayleigh numbers are required to specify linear stability 
criteria. Numerical results are presented on the basis of which the explanation by 
Acheson (1979) of the second of these three anomalies can be assessed, and Acheson’s 
explanation is adapted to the two other anomalies. 

1. Introduction 
Doubly diffusive instabilities have been observed in a variety of fluid systems and 

have been hypothesized to occur in still others (Turner 1974; Schechter, Velarde & 
Platten 1974). Among the applications, the following include rotation. 

(i) Brakke (1955) observed, and correctly explained, a doubly diffusive instability 
that occurs when a solution of a slowly diffusing protein is layered over a denser 
solution of more rapidly diffusing sucrose. Nason et al. (1969) demonstrated that this 
instability can be suppressed by rotation in the ultracentrifuge. This instability, which 
is deleterious to certain biochemical separations, has also been studied by Sartory 
(1969), Hsu (1975), Mason (1976), and Halsall & Sartory (1976). 

(ii) Stommel & Fedorov (1967), Anati (1972), and Linden (1974) have remarked 
that the length scales characteristic of doubly diffusive convecting layers in the ocean 
may be sufficiently large that the Earth’s rotation might be important in their 
forma tion. 

(iii) Ulrich (1972) has recognized that rotation may influence ‘ semiconvection’ in 
the envelopes and cores of certain stars in which the doubly diffusive character is 
due to gradients of temperature and mean molecular weight, the gradient of the latter 
arising from a spatially varying hydrogen-helium ratio. 

(iv) Copley (1  979, private communication) reports an exploratory experimental 
attempt to suppress doubly diffusive convection in a aolidifying aqueous ammonium 
chloride solution by employing uniform rigid rotation. This optically transparent 
aqueous system has been used by Copley et al. (1970) to study by analogy the doubly 
diffusive convection thought to occur in certain casting and crystal growth operations 
including the production of superalloy single crystal turbine blades (Giamei & Kear 
1970). 
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(v) Oscillations and layering have been observed by Schaaffs (1975) in a rotating, 
thermally stratified aqueous solution of ethylene glycol, and Schmitt & Lambert 
(1979) have experimentally studied the effects of rotation on highly supercritical salt 
fingers. 

(vi) Antoranz & Velarde (1979) have reported numerical calculations of the in- 
fluence of rigid rotation on the stability of a binary fluid in which (Fickian) diffusive 
and convective mass transfer are augmented by thermal diffusion (Soret transport). 
Their goal was to increase the usefulness of the thermogravitational method of 
measuring the Soret coefficient in liquid systems. 

In  view of these applications and experimental observations, i t  is of interest to gain 
a general understanding of the manner in which rotation affects the hydrodynamic 
stability of a doubly diffusive fluid. To this end, consideration will be given to the 
interaction of shear-free, solid-body rotation with the simplest doubly diffusive 
density distribution (constant vertical gradients of two properties that influence the 
density) in a fluid layer of infinite horizontal extent. 

Three rather surprising results emerge from the linear analysis. Under some con- 
ditions, a doubly diffusive layer, stable in the absence of rotation, becomes unstable 
in the presence of rotation. Furthermore, under other conditions, a linearly stable 
rotating doubly diffusive layer is destabilized by the addition of heavy solute to the 
bottom of the layer. Finally, and most surprisingly, under yet another set of con- 
ditions, the specification of linear stability criteria requires the calculation of three 
thermal Rayleigh numbers rather than the usual single value. These possibilities do 
not appear to have been recognized in previous analytical investigations of the 
problem by Sani & Scriven (unpublished), Sengupta & Gupta (1971), or Antoranz & 
Velarde (1 979). Only the second of the three anomalies was noticed by Masuda (1 978). 
Since that time, a physical explanation of the second anomaly has been advanced by 
Acheson (1979). This paper presents information on which Acheson’s theory can be 
assessed and also extends Acheson’s explanation to the other two anomalies. 

The third anomalous result (requirement for three thermal Rayleigh numbers in 
order to specify linear stability criteria) has been overlooked not only in all four of 
the previous investigations of the present problem, but also in a recent study of 
another convective stability problem (Griffiths 1979). 

2. Formulation of the problem 
Consider a layer of Boussinesq binary fluid of infinite horizontal extent in the x’ 

and y’ directions, confined between parallel stress-free boundaries a t  z’ = 0 and 
z’ = L a t  which the temperatures are To and TL respectively. The layer rotates uni- 
formly about the z’ axis with constant angular velocity a. Denote one of the compo- 
nents byA and suppose that the concentration of A is held at  C,, and C,, a t  the lower 
and upper boundaries, respectively. The equation of state is given by 

p =P(i-Ol.T(T--)+Ol.~(C,-~g)), 

where the mean reference temperature and concentration are defined by = +(To + TL) 
and CA = 4(C,, + CAL). The non-dimensional linear perturbation equations can then 
be shown to be 

(Pra/at-V’)O-RTW = 0, (1) 
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(sc a p t  - v2) s - R,W = 0, 

( a p t  - v2) 5- Tai  awpz = 0, 

( 2 )  

(3) 

(a/at-v2)~2W+Ta9a~/az-vqe-vqs = 0, (4) 

where 5 is the vertical vorticity and RT = aTgLs(To - TL)/Kv, R, = acgL3(CAL - Cdo)/ 
Dv, T a  = 4!2L4/v2, Pr = v /K,  andSc = v /D  are the thermal Rayleigh, solute Rayleigh, 
Taylor, Prandtl, and Schmidt numbers, respectively. It is also required that the con- 
ditions 

w = aaw/az2 = a g a z  = e = s = 0, (5) 

be satisfied a t  the stress-free boundaries x = 0 and z = 1.  The horizontal Laplacian 
VB, = P / a x 2  + Play2 has been introduced, and D ,  K ,  v and g are the diffusivity of A ,  
the thermal diffusivity, the kinematic viscosity and the gravitational acceleration, 
respectively. 

3. Linear stability analysis 
To examine the stability of (1)-(5), solutions of the form 

# ( x , y , z , t )  = ~,sinnxexp(ik,x+ik,y+d), 

where # is any disturbance quantity, are chosen. (Inclusion of solutions with vertical 
dependence sin nnx, n > 1, does not alter the linear stability criteria calculated here.) 
Substitution into (1)-(5) leads to the relationship 

( y ( y + ~ ) ~ + n ~ T a )  (y+uPr)  (y+uSc)-k2(y+u)  (RT(y+aSc)+Rs(y+uPr)) = 0,  
(6) 

where y = n2 + k2 and k2 = ki + ki. The two Rayleigh numbers R, and R, have been 
chosen to make the mathematical problem (6) invariant with respect to the interchange 
(R,  t) R,, Pr ~ S C ) .  For the same reason, the parameters Pr and Sc have been used 
instead of Pr and 7 = Pr/Sc. (For an isothermal ternary fluid, one need only replace 
RT and Pr by a second solute Rayleigh number and a second Schmidt number, 
respectively . ) 

One of the ways in which (6) may be used to examine the stability of a fluid con- 
figuration will now be discussed. The parameters k ,  Ta,  Pr, Sc and one of the Rayleigh 
numbers (say R,) are taken as given. The other Rayleigh number (RT) is considered 
to be a free parameter that is varied until a neutral (marginal) solution of (1)-(5) with 
Re(a) = 0 is obtained. To do this, we recast (6) as 

and then set the real part of u equal to zero (let u = iw) .  After complex quantities are 
cleared from the denominators, (7) yields 

nsTa( yz  + d P r ) )  / k2 + iwyM, 
(8) y 2  + w2 

y 2  + o2PrSc 
RT = - y 2  + w2Sc2 

with 
Sc - Pr neTa(Pr - 1) y (  1 + Pr) 

M =  y2 + 6Jasc2 Rs + k2( ya + 0 s )  + k2 ' 
(9) 
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The physical quantity RT must be real, so that (8) implies that either w = 0 or M = 0. 
For u = 0, (8) gives 

RT = R$ = - R, + (y3 + n2Ta)/k2, (10) 

so that for steady neutral solutions, RT is a single-valued function of k with a unique 
minimum at k = kLin satisfying (A 2a) of the appendix. An ‘effective Rayleigh 
number ’ Re = RT + R, may be defined, and the linear stability of a rotating doubly 
diffusive fluid layer with respect to the onset of steady convection is seen to be deter- 
mined by whether or not the sum R,  + R, exceeds 

where y8 = (ks,i,)2+7r2. As might have been expected, this steady result is indepen- 
dent of the transport properties Pr and Sc. 

For oscillatory (w  $: 0) neutral solutions of (1)-(5), (8) requires M = 0. The vanishing 
of M provides a dispersion relation of the form 

with 
604+p&+y = 0 

S = y ( l + P r ) S c 2 ,  

B = y3( 1 + Pr)  (1  + Sc2) + n2Ta(Pr - 1)  Sc2 - k2Rs(Pr - Sc), 

y = y2(y3( 1 + Pr) + n2Ta(Pr - 1) - k2Rs(Pr - Sc)) .  

(13b) 

( 1 3 4  

Because oscillatory solutions are possible both in the non-rotating doubly diffusive 
case (Ta = 0) with frequency given by 

k2R,(Pr - Sc) - y3( 1 + Pr) 
w2 = Y ( 1 4 4  y( 1 + Pr)  sc2 

and in the rotating singly diffusive case (Pr = Sc) with frequency given by 

+%!‘a( 1 - Pr)  - ys( 1 + Pr) 
w2 = Y (14b) 

Y(1+ Pr) 

(12) is a quadratic in w2 and can give rise to more than one positive value of w2 for 
fixed k,  R,, Ta, Pr, and Sc. This has important implications for the linear stability of 
a rotating doubly diffusive fluid, as will become clear in $3.2.  Furthermore, the 
possibility of multiple real frequencies, and hence multiple oscillatory neutral sol- 
utions, occurs in other convective stability problems, as will be discussed in $4 .  Thus, 
it is worthwhile to establish necessary conditions for the existence of two oscillatory 
neutral solutions. From Descartes’ rule of signs, in order for (12) to have two positive 
roots, it  is necessary that B c 0 and y > 0,  from which it follows, using (13b, c), that 

y3( 1 + Pr) (1  + Sc2) + n2Ta(Pr - 1) Sc2 c k2Rs(Pr - Sc) c y3( 1 + Pr) + nZTa(Pr - 1) .  

0 < y3( l + Pr) Sc2 < n2Ta(Pr - 1) (1 - S C ~ ) ,  
Therefore, 

which is equivalent to requiring that one of the conditions 

P r >  1 >Sc or Sc > 1 > Pr 
be satisfied. 
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FIUURE 1. Regions of the quarterplane in which the Prandtl and Schmidt numbers 
. are both non-negative. 

It is convenient to divide the portion of the Pr-Sc plane in which these two ‘trans- 
port numbers ’ are non-negative into six regions, as shown in figure 1. The methods 
used and results obtained in regions Ia  and I b ,  IIa and IIb, and IIIa and I I I b  are 
described in $3.1,  3.2, and 3.3, respectively. Some new results for the singly diffusive 
case (Pr = Sc), previously discussed by Chandrasekhar (1961, chapter 111), are pre- 
sented in the appendix. 

3.1. Regions l a  and I b  

Because neither of (15a, b) is satisfied in these regions, no more than one oscillatory 
neutral solution can exist for each wavenumber k, a conclusion reached by Sani & 
Scriven for the case R, < 0. We remember that in a singly diffusive stratified rotating 
layer, linear theory predicts that the stationary mode is the preferred mode of in- 
stability if the Prandtl (or Schmidt) number exceeds Pr* = 0.6766.. . , a t  which value 
the denominator of (A 4) of the appendix vanishes. Thus in a rotating doubly diffusive 
fluid with both Pr and Sc greater than unity, the oscillatory instability associated 
with inertial wave propagation in a singly diffusive stratified rotating fluid should not 
be expected to occur. 

Important information about the neutral curves in the R,  - k plane may be deduced 
by locating the bifurcation points a t  which the steady and oscillatory neutral curves 
join. These must occur on the steady RS,k curve at wavenumbers kb for which w = 0 
is a root of (12). Thus y(kb) = 0, or equivalently 

ki + 3n2g + (3+ - R,(Pr - Sc)/(  1 + Pr))  + dJ + n2Ta(Pr - l)/( 1 + Pr) = 0, (16) 

so that for Pr > 1 the left hand side of (16) is a cubic polynomial in ki with either zero 
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FIGURE 2. Curves of neutral stability in the R,-k plane. (a) Pr = 7, Sc = 700, 
Tar = 1000, Rs = 1000. (b )  Pr = 2, Sc = 3, To = 1000, Rs = -4500. 

or two sign changes. Hence, by Descartes’ rule of signs, either there are no bifurcation 
points or there are two. Typical neutral curves in the R,-k plane are shown in figures 
2(a) and (b) .  These neutral curves, like those for the rotating case (Chandrasekhar 
1961, fig. 27) and the non-rotating doubly diffusive case, are connected in a topo- 
logical sense (Apostol 1957, Q 8.1 1). This connectedness allows the linear stability 
criteria to be expressed in terms of a single ‘ critical thermal Rayleigh number ’ R$, 
below which a configuration is linearly stable and above which it is definitely unstable. 
The numerical determination of R$ proceeds as follows. One first determines the 
number of positive solutions k, of (16). If there are none, then no oscillatory instability 
is possible and RcT is given by (A 3a). If there are two, then the minimum (over k) of 
(8) with w2 given by (12) is compared with R$,,in given by (A 3a)  and the smaller 
value is ReT, corresponding to the critical wavenumber k,. 

Results obtained according to this procedure for the case of salt water, Pr = 7, 
Sc = 700, are shown in figure 3 and table 1. The lowest locus in figure 3 is the non- 
rotating case T a  = 0, for which (8) and (14a) predict the onset of oscillatory motion 
to occur at 

Pr2( 1 + Sc) 27n4(Sc + Pr) (1 + Sc) 
4Sc2 SC2( 1 + Pr) Rs + ROT,min = - 

For Ta = 0, the minimum thermal Rayleigh number for stationary convection is 

R&, min = - RH + y+, 
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RS 
FIGURE 3. Variation ofthe CriticalRayleighnumber, R& with Rsfor salt water (Pr = 7, Sc = 700). 
The portion of each stability boundary lying to the left of the discontinuity in slope corresponds 
to oscillatory onset (wa > 0 ) ,  while to the right, the onset is of the steady type (w = 0). The 
‘ fingering’ line (---) is R T S C + R S P ~  = 0, and the‘diffusive’ curve (---) is calculatedfrom 
a corrected version of equation 3.3 of Baines & Gill (1969). 

so that in the non-rotating case, R$ is a piecewise linear function of R,. At 

- 277r4(1+Pr) 
4( Pr-Sc) ’ 

the slope of the R$-R, plot changes, as does the preferred mode of instability. From 
figure 3, one may observe that the principal effect of rotation is to stabilize the fluid 
against convection. Aside from this stabilization, the R$-R, plots are virtually un- 
affected. In the region of steady onset (R, generally positive), the linearity is retained 
exactly, according to (10). In the region of oscillatory onset, the deviations from 
linearity are very sli-ght. Also, the solute Rayleigh number 3, at which the preferred 
mode of instability changes is affected very little. From table 1, it may be seen that 
k, is independent of R, in the region of stationary onset (R,  > Z,) and varies slowly 
with R, for R, < R,. For salt water, k, depends primarily on Ta. Furthermore, for 
Ta = 103 or 104, kc can be shown to have a minimum near &. In fact, the variation 
of k, with Rs can be not only non-monotonic but also discontinuous. This behaviour is 
more pronounced for other combinations of Pr and Sc, as will be seen in 0 3.2. 

R, = 
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FIGURE 4. Variation of R$ with Rs for several Taylor numbers. (a) Pr = 2, Sc = 3. Oscillatory 
onset to the left of each slope discontinuity, and steady onset to the right. (b)  Pr = 3, Sc = 2. 
Steady onset to the left of each slope discontinuity, oscillatory onset to the right. ---, 
' Fingering' line; ---, 'diffusive' o w e .  
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RS 

FIGTJRE 6 .  Destabilization by addition of a bottom, heavy-solute gradient 
for Pr = 0.2, Sc = 1.2, Ta = 600. 

Figure 3 also shows that rotation inhibits the steady and oscillatory motions to very 
nearly the same extent. Closer inspection (see table 1) shows that the absolute increase 
in RcT due to rotation is slight€y greater a t  large negative solute Rayleigh numbers, 
for which instability sets in as oscillations, than a t  large positive values of R,, for 
which the onset of steady convection is preferred. The difference in stabilization, small 
for salt water, is vividly illustrated in figure 4 (a) for Pr = 2, Sc = 3 (region I a ) .  Sym- 
metrical results for Pr = 3, Sc = 2 (region I b )  are shown in figure 4 ( b ) .  The variation 
of Rs with T a  is more readily apparent in these cases of smaller and more nearly equal 
Pr and Sc. 

The inhibition by rotation of the onset of stationary convection is a direct conse- 
quence of the Taylor-Proudman theorem. That oscillatory motion is even more 
strongly inhibited is a t  first surprising. The explanation is thought to lie in the fact 
that, in a thermally stratified fluid with R, = 0, oscillatory instability is not possible 
if Pr > 1. Thus it seems logical that in a doubly diffusive fluid with both Pr and Sc 
greater than one, oscillatory doubly diffusive instability will be prohibited a t  Taylor 
numbers sufficiently large to dominate the flow. The behaviour shown in figures 3, 
4(a) and (b ) ,  and table 1 is certainly consistent with this conjecture. 

3.2 (a). Region I I a  
In this part of the parameter space (Pr < 1 < Sc), a rotating doubly diffusive layer 
can be destabilized by decreasing R,, for example, by adding heavy solute to the 
bottom. The destabilization manifests itself as a minimum in the R,-R, plot, as 
shown in figure 5. For R, sufficiently negative, decreasing R, stabilizes the layer, as 
expected. Similarly, for R, sufficiently large, further increases in R, destabilize the 
layer. As seen in figure 5, however, for certain combinations of Pr, Sc, and T a  there 
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RS 
FIQURE 6. Variation of RT and wPr/y with RS for Pr = 0.026, So = 101, Ta = 4 x lo6. 

is some intermediate range of R, in which the layer is destabilized by decreasing R, 
and stabilized by increasing R,. This result has also been obtained by Masuda (1978), 
but until the work of Acheson (1979), no physical explanation was available. 

Acheson notes that in a thermally stratified rotating fluid (R, = 0), with Pr c 1, 
the basic overstability mechanism is associated with inertial wave propagation. The 
frequency is determined by the Taylor number. For Sc very large in a doubly diffusive 
rotating fluid, diffusion of solute is so slow that substantial changes in the bobbing 
frequency can be produced by changes in R, that have little stabilizing effect via 
solute diffusion. Thus, the frequency can be ‘tuned’ by adjusting R,. If the frequency 
is too small, a bobbing parcel will always remain in approximate thermal equilibrium 
with its environment. If the frequency is too high, no significant heat transfer will 
occur into or out of the parcel in the first place. In either extreme, the basic over- 
stability mechanism is operating at less than optimal efficiency. At some intermediate 
frequency, however, the maximum efficiency is achieved, and overstable oscillations 
set in at a lower value of R, than is possible for larger or smaller frequencies. 

To make this quantitative, Acheson does the following. The temperature difference 
between a parcel bobbing with frequency w and its surroundings as it passes through 
its equilibrium position is 

(17) 
- dT wPr/y - -h-  dT wPry 

dz (wPr/y)2+ 1’ 
AT = -h-  

dz dPr2 + y2 

where h is the displacement amplitude, d T / d z  is the vertical temperature gradient, 
and y = ++ k2 is the square of the total wavenumber. This temperature difference is 
maximized when wPr/y is unity, and hence Acheson’s analysis predicts that when Sc 
is large, the local minimum in the R,-R, plot will occur when wPr/y = 1. Figure 6 
shows plots of wPr/y and R, versu8 R, for Pr = 0-025, Sc = 101, and T a  = 4 x l@. 
It is seen that wPr/y = 0.993 at R, = - 107 (approximately the value of R, that 
minimizes R,), and although oPr/y  is only slightly less than that value for larger 
(less negative) values of R,, it is nonetheless clear from figure 6 that the destabilization 
is associated with a monotonically increasing wPr/y, just as predicted by Acheson. 
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FIGURE 7. Variation of (wPr/g)* with Ta for Pr = 0.6, Sc = 101. 

Indeed, after much algebra,? it can be shown that at the value of R, which (locally) 
minimizes R, the ratio wPr/y is given by 

where z,, is the largest real root of zO(2z, - 3)z + B = 0 and 

Ta(Sc - 1) Pr2 
(1  - Pr2) (Sc+ 1)n4' 

B =  

This allowed the computation of (wPr/y)* for a large number of combinations of 
Pr, Sc, and Ta.  Results for Pr = 0.5 and Sc = 101 are shown in figure 7, wherein it is 
seen that (wPr/y)* is always less than 4 2 ,  and that (wPr/y)* approaches (2 - 3Pr2)) 
as T a  (and hence B )  become large. In  fact, for Pr < 6 ,  there is, in addition to the lower 
bound on Ta for which destabilization (existence of a minimum in the RT-R, curve) 
is possible (shown in figure 7 at T a  x 200), also an upper bound on the range of Ta  
for which destabilization occurs. Thus, in practice, the largest value of (wPr/y)* is 
less than 42.  

For Pr = 0.75, Sc = 1.75, and various values of Ta,  figure 8 shows the variation of 
k, with R,. At R, = s,, the oscillatory and stationary neutral curves have their 
minima at  the same RT. If these minima occur a t  different wavenumbers, a discon- 
tinuous k,-R, plot results. Such an effect was noted in 5 3.1 for salt water and is much 
more evident here. 

Finally, we take note of the neutral curve shown in figure 9 for Pr = 0-1, Sc = 10, 
T a  = 1000, and R, = 1600, in which the oscillatory neutral curve bifurcates from the 
stationary neutral curve a t  a small wavenumber (k II 2) and then crosses the stationary 
neutral curve a t  k II 2.3. This crossing is not a bifurcation and the frequency of the 
oscillatory neutral disturbance there is not zero. Even more interesting neutral curves 
will be discussed in the next section. 

t The details of which are available on request from the author. 
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3.2 (b ) .  

For Pr > 1 > Sc., examination of (16) shows that neutral curves with zero or two 
bifurcation points are possible, as in regions Ia  and I b .  The crucial difference is that 
in region I1 b, the absence of bifurcation points in the RT-k plane does not imply the 
absence of oscillatory neutral solutions, as will now be demonstrated. 

Figures 10 (a)-(c) show successive neutral curves for decreasing values of R, with 
Ta,  Pr and Sc fixed. The neutral curve of figure 10 (a)  is similar to some that occur in 
regions Ia and I b,  except that a pinching of the oscillatory part has given rise to two 
oscillatory neutral solutions for some wavenumbers, an impossibility in regions I a, 
Ib, and IIa, according to (15a, b) .  In figure 10 ( b ) ,  the pinching has progressed so far 
that the two distinct bifurcation points, kb l  and kb2, at which the oscillat,ory and steady 
portions of the neutral curve of figure 10 ( a )  are connected, have coalesced to a point 
of tangency at kb. At an even smaller R,, (figure 10 ( c ) ) ,  a fully disconnected situation 
has been achieved. The minimum and maximum wavenumbers for oscillatory neutral 
solutions, kDl and kD2, can be determined by the condition that the discriminant of 
(12) vanishes for such wavenumbers, i.e. p2- 487 = 0. 

Thus far, the linear stability question can still be answered in terms of a single 
critical thermal Rayleigh number (figures 10 (a)-(c)) .  However, a further reduction 
in R, may give rise to the situation depicted in figure 10 ( d ) .  Here it is seen that there 
is a range of thermal Rayleigh numbers RT, < RT c RT3 for which all solutions, 
oscillatory or steady, of the linear disturbance equations are stable at any wave- 
number. Thus, the linear stability criteria involve three values of RT and may be 
stated as follows. For RT < RT1, and RT, < RT < RT3, the layer is linearly stable. 
For RT1 < R ,  < RT2, and RT > RT3, the layer is unstable. In  such a case, two in- 
teresting experimental results are predicted by the linear analysis for a fluid with a 
positive coefficient of thermal expansivity aT : 

(i) for RT2 c RT c RT3, cooling the bottom of the layer may bring about the onset 
of motion, and 

(ii) convection in an overstable layer with RT1 < RT < RT2 may be suppressed by 
heating the bottom. 

As R, is decreased further beyond the value corresponding to figure 10 ( d ) ,  the closed 
oscillatory neutral curve eventually shrinks to a point and disappears. 

In figure 11, neutral stability boundaries are given for the case Pr = 1.2, Sc = 0.2. 
The Ta = 0 locus is, as usual, a piecewise linear function of R,. For non-zero Taylor 
numbers, the oscillatory part of each locus has a certain amount of curvature. For 
Ta < 180.8198 . . . , the doubly diffusive effects dominate the layer and the RT-RS plots 
are of the familiar single-valued type. Linear stability is determined by whether or 
not RT exceeds the critical value R$, For intermediate rotation rates 

(180.8198 ... c TU < 3114.560 ...), 

Coriolis and doubly diffusive effects are of comparable importance. Their interaction 
is responsible for the neutral stability curve shown in figure 10(d) and the subsequent 
need to specify linear stability criteria in terms of three thermal Rayleigh numbers. 
The region near the intersection of the steady and oscillatory portions of the RT-R, 
curve for Ta = 600 is shown in expanded form in figure 12. If the layer rotates suf- 
ficiently fast (Ta > 3 114.560 . . .), the Coriolis force is dominant, and the locus in the 
R,-R, plane is again single-valued for these values of Pr and Sc. 
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FIGURE 11. R y R s  plots for Pr = 1.2, Sc = 0.2 for various Taylor numbers. The straight, and 
nearly horizontal, portion of each stability boundary corresponds to steady onset, while the 
portion below the slope discontinuity is characterized by wz > 0. ---, ‘Diffusive’ curve. The 
‘fingering’ line appears off of the diagram for Rs < 0.  

Figure 13 shows, for various Pr and Sc, the range of Ta for which multivalued plots 
like figure 12 can occur (in the region above a curve with given Sc). For some Pr and 
Sc, multivalued RT-RS plots are not possible at any Ta, e.g. Pr = 1-05, Xc = 0.2 and 
Pr = 2, Sc = 0.8. For some Pr and Sc, such plots are possible for all sufficiently large 
values of Ta, with no upper limit. Examples are Pr = 100, Sc = 0.5 (Ta > 200), and 
Pr = 3, Sc = 0.8 (Ta > 5 x 106). For other values of Pr and Sc, multivaluedness occurs 
for a finite range of Taylor numbers, as for the case shown in figure 11. 

As formulated in $2, the present problem is invariant with respect to the interchange 
(R, t ,R, ,Prt ,Sc) .  Thus, RT-R, plots in region I I b  may be obtained from the 
corresponding RT-RS plots in region IIa. One may note this from a comparison of 
the R,-R, plots of figure 5 (Pr = 0.2, Sc = 1.2, Ta = 600) and figure 12 (Pr = 1.2, 
Sc = 0.2, Ta = 600). The symmetry is clear, as is the physical explanation which 
simply requires the interchange of RT and R, in the explanation put forward in $3.2 a. 

It is also evident from this symmetry that the existence of conditions in region I I b  
for which three thermal Rayleigh numbers ere required to specify linear stability 
(and indeed, the existence of the disconnected neutral curves) follows directly from 
the existence of conditions in region IIa for which the R,-R, plot has a local 
minimum. 

3.3. Regions I I I a  and IIIb 

For combinations of Pr and Sc in these regions, neither of (Ma, b) is satisfied, so again 
no more than one oscillatory neutral solution per wavenumber is possible. Also, the 
left-hand side of (16), considered as a cubic polynomial in ki, can have zero, one, or 
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two sign changes. Therefore, neutral curves with zero, one, or two bifurcation points 
are possible. The three possibilities are shown in figures 2 (a)  and (b) ,  and figures 27 of 
Chandrasekhar (1961). The neutral curves are again connected, so that the linear 
stability analysis need only provide a critical value of RT and the associated kc. 
Numerical results are shown in figure 14 for the case PT = 0.2, Sc = 0.5. 

A most striking feature is the crossing of the Ta = 0 and T a  = lo3 loci. For example, 
a non-rotating layer stratified according to RT = 3500, Rs = - 4500 is predicted by 
linear theory to be stable, but when rotating with T a  = los, it is unstable. The basic 
thermal and compositional stratifications are identical in the presence and absence of 
rotation so that this apparent destabilization is not produced by a rotation induced 
density rearrangement, such as by baro-diffusion. 

This result differs from the destabilization by rotation predicted for the onset of 
thermal convection in certain viscoelastic fluids by Takashima (1970) and Bhatia & 
Steiner (1972). In  those studies, R, asymptotically approaches, from above, a limiting 
value as Ta approaches infinity. In the rotating doubly diffusive case, there is no such 
limit and RT increases without bound for T a  sufficiently large. Thus, the destabiliz- 
ation appears as a minimum in the RT-Ta curve, as shown in figure 15. 

The existence of such a minimum suggests that this destabilization by rotation 
may have a physical basis similar to that proposed by Acheson (1979) to explain the 
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sometimes destabilizing effect of a ' stable ' density gradient in certain convection 
problems, including the present problem when Pr < 1 < Se (discussed in 5 3 . 2 ~ ) .  In  
what follows, we will adapt Acheson's ideas to the situation when Pr and Sc are less 
than unity. 

For small Ta, overstable oscillations can occur when the diffusivities of heat and 
solute are sufficiently different. The basic overstability mechanism is well understood 
(Turner 1974). For small Ta, the frequency w is relatively small so that the parcel can 
remain in approximate density equilibrium with its environment, via the diffusion 
of heat and solute. As Ta increases, however, so does the oscillation frequency. This 
has the effect of making it more difficult for the parcel to remain in density equilibrium 
with its surroundings as it bobs up and down, and the oscillations will grow. Of course, 
if w becomes too large, the basic overstability mechanism will fail because very little 
heat or solute will be transferred to the parcel during a cycle. Thus, we see how 
instability can be facilitated by an increase in w ,  and that if w is too small or too 
large, the basic overstability mechanism is not very efficient. Again, as in region 
IIa, for some intermediate value of w ,  the overstability mechanism achieves 
its optimal efficiency, and convection becomes possible a t  a lower value of R, 
than is possible for smaller or larger values of w .  This is consistent with the results 
shown in figure 15, where it is seen that an increase in Ta produces an increase in 
the non-dimensional group w P r / y  (at marginal stability), as well as a minimum in 
the R,-Ta plot. 

Unlike the problems considered by Acheson, we must account for the diffusion of 
both heat and solute, so the analysis is slightly different. We find, by analogy to (17), 
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portion of the stability boundary lying below the slope discontinuity (point A )  corresponds to 
steady onset. The portions of those stability boundaries to the left of point A ,  as well as the part 
of the T a  = lo4 stability boundary shown here, correspond to oscillatory onset. The curve labelled 
RE is the lower boundary ofthe region in which Joseph (1970) has shown that subcritical instability 
is possible for Ta = 0. ---,‘Fingering line; ---,‘diffusive’ curve. 

the concentration difference between a bobbing parcel and its surroundings as it 
passes through its equilibrium position to be given by 

dC, wscy = -h-  dC, 0Scly C , =  - h -  
dz 02SC2+ y2 dz (wSc/y)2+ 1’ 

where dC,/dz is the vertical concentration gradient. The corresponding density 
difference is then 

so that the maximum density difference (as a function of w )  occurs when 
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For Pr = 0-2, Sc = 0.5, and R, = - 4500, substitution of R, = 3400 (the approxi- 
mate value at  the minimum; see figure 15) yields two values of wPr/y,  namely 0.135 
and 1.29, compared with the correct value of 0.57. Given that the analysis only con- 
siders the maximization of A p  at the particle’s equilibrium position, this is probably 
not too bad. In  any case, it is clear that the destabilization is associated with an 
increase in wPr/y, and that when wPr/y becomes sufficiently large, rotation again 
serves to stabilize the layer. 

Finally, the energy result of Joseph (1970) is shown as a dashed curve labelled RE 
in figure 14. Below this curve, the rotating and non-rotating cases are unconditionally 
stable. Between this curve and the appropriate (depending on T a )  solid curve, sub- 
critical instabilities are possible. Indeed for several combinations of Pr and Sc in 
regions IIIa and IIIb, Sani (1965) and Veronis (1968) have demonstrated the existence 
of subcritical instabilities for T a  = 0. These may hinder the experimental observation 
of the predicted destabilization by rotation in this regime. 

4. Discussion and concluding remarks 
The principal results of the foregoing linear analysis of the stability of a rotating 

doubly diffusive fluid layer may be summarized as follows. 
(i) If the Prandtl and Schmidt numbers both exceed unity, rotation inhibits the 

onset of motion in both the ‘ fingering ’ and ‘ diffusive ’ regimes, with the inhibition in 
the latter being somewhat more pronounced than in the former. 

(ii) For Pr < 1 < Sc, a rotating layer can be destabilized by the addition of a 
bottom-heavy solute gradient. 

(iii) For Pr > 1 > Sc, a rotating doubly diffusive layer can be linearly stable with 
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a certain temperature gradient, while an identical layer with a less adverse temperature 
gradient is definitely unstable. The result is that the linearly stability criteria might 
have to be expressed in terms of three thermal Rayleigh numbers, as opposed to a 
single ‘ critical ’ value. 

(iv) For a fluid with both Pr and Sc less than unity, the onset of convection as 
infinitesimal disturbances in a rotating doubly diffusive layer can occur at a lower 
adverse temperature gradient than in an identical non-rotating layer. 

Whether the interesting predictions of the linear stability analysis summarized 
above are experimentally realizable depends on the availability of fluids with the 
proper Prandtl and Schmidt numbers, as well as on the influence of finite amplitude 
effects and more realistic boundaryconditions. With the R, t) R,, Pr t) Sc invariance 
understood, binary liquid metals (Pr < 1 < Sc) constitute an appropriate class of 
fluids for the testing of predictions (ii) and (iii) above. The influence of realistic bound- 
ary conditions on the linear stability of a doubly diffusive fluid layer has been studied 
by Nield (1967), who has shown that the numerical results, but not the qualitative 
features, are changed. The addition of uniform rotation does not seem likely to alter 
this conclusion. The question of finite amplitude effects, briefly considered by Sengupta 
& Gupta (1971), is of special interest, given the existence of subcritical instabilities 
in both the non-rotating doubly diffusive case (Veronis 1965,1968; Sani 1965) and the 
rotating singly stratified case (Veronis 1959). 

A necessary condition for the existence in a linear stability problem of the dis- 
connected neutral curves described in 53.23 that give rise to the predictions sum- 
marized in (iii) above is that there be a dispersion relation between w2 and k that is 
of degree two or higher in wa, or equivalently, that a t  least two types of wave propa- 
gation are possible. Previously studied problems meeting this necessary requirement 
include the present problem, a rotating fluid layer heated from below in the presence 
of a magnetic field (Chandrasekhar 1961, chapter V; Eltayeb 1975a), a triply diffusive 
layer (Griffiths 1979), and a viscoelastic layer heated from below and subjected to 
either rotation (Takashima 1970; Bhatia & Steiner 1972; Eltayeb 1975b) or a magnetic 
field (Bhatia & Steiner 1973; Eltayeb 1976). Disconnected neutral curves actually do 
occur in the triply diffusive and rotating hydromagnetic layer problems (Pearlstein, 
unpublished calculations), and might be found in other situations. 
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Appendix 
For Pr = Sc, (14) and (15) may be combined to give 

The minima of (16)  and (A 1) are attained when 

and 
2(k2 + n2)3 - 3n9(k2 + n2)2 - n2Ta = 0 (A 2 0 )  

(A 2 b )  2(kS+n2)3- 3ne(k2+n2)2-n2Ta (&--l= 0, 

respectively. Denoting the minimizing values of k2+n2 by y,(Ta) and y,(Ta), the 
corresponding values of Rg and R$ are 

Rg, m1n = -R, + 3 ~ 3 T a ) ,  

R$, 

(A 3a) 

(A 3b)  = - R, + 6( I + Pr) $(!Pa). 

The determination of linear stability criteria is then reduced to deciding which of 
(A 3a, b )  is the smaller. The preferred mode of instability is independent of R,, and 
for fixed Pr, changes from stationary to oscillatory at  a value of T a  for which the 
values of RT given by (A 3a, b) are equal. It has been shown (Chandrasekhar 1961, 
chapter 111) that there is a Prandtl number Pr* = 0.67 660 498 . . . such that 

(i) if PT > Pr*, for all Taylor numbers, the stationary mode is the fist to become 
unstable as RT is increased and 

(ii) if Pr < Pr*, the overstable mode will be observed (according to linear theory) 
at  the lower thermal Rayleigh number if 

27n4(1 +Pr-  2Pr2)2 (1 + Pr)4[(2 + 2Pr)t - 13 
T a > % =  

2[ ( 1 + Pr)& - 242 Pr2]3 

For smaller Taylor numbers, the stationary mode is preferred. 

PV 
0 
0.1 
0.2 
0.4 
0.6 
0.56 
0.6 
0.63 
0.65 

Fa 
544.70 
731-42 
1047.0 
3132.6 
8600.4 
18837 
67697 
2.5836 x lo6 
1-2463 x lo6 

To (Chmdrasekher) 
648 
728 
990 
3163 
8606 
18870 
68160 
2.588 x 106 
1.223 x loo 

TABLE 2. 

The existence of such a critical Taylor number was recognized by Chandrasekhar 
(1961, pp. 118-119), but the formula (A 4) (obtained by manipulation of (A 2a, b)  and 
(A 3a, b ) )  appears to have been previously unknown. Values of Ta calculated from 
(A 4), along with those of Chandrasekhar (1961, table X) are shown in table 2. The 
latter values, calculated by iteration, are seen to be in error by as much as 5.4 yo. 
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